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Application: Web Auctions
Suppose you are designing a new online auction website that 
is intended to process bids for multi-lot auctions. 

This website should be able to handle a single auction for 100 
units of the same digital camera or 500 units of the same 
smartphone, where bids are of the form, “x units for $y,”
meaning that the bidder wants a quantity of x of the items being 
sold and is willing to pay $y for all x of them. 

The challenge for your website is that it must allow for a large 
number of bidders to place such multi-lot bids and it must decide 
which bidders to choose as the winners.

Naturally, one is interested in designing the website so that it 
always chooses a set of winning bids that maximizes the total 
amount of money paid for the items being auctioned.

So how do you decide which bidders to choose as the winners?

Greedy Method 2
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The Greedy Method
The greedy method is a general algorithm 
design paradigm, built on the following 
elements:
◼ configurations: different choices, collections, or

values to find

◼ objective function: a score assigned to 
configurations, which we want to either maximize or 
minimize

It works best when applied to problems with the 
greedy-choice property: 
◼ a globally-optimal solution can always be found by a 

series of local improvements from a starting 
configuration.
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The Greedy Method
The sequence of choices starts from some well-understood 
starting configuration, and then iteratively makes the 
decision that is best from all of those that are currently 
possible, in terms of improving the objective function.
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Web Auction Application
This greedy strategy works for the profit-maximizing online 
auction problem if you can satisfy a bid to buy x units for $y by 
selling k < x units for $k * y/x.

In this case, this problem is equivalent to the fractional 
knapsack problem.
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Web Auctions and the 
Fractional Knapsack Problem

In the knapsack problem, we are given a set of n items, each 
having a weight and a benefit, and we are interested in choosing 
the set of items that maximize our total benefit while not going over 
the weight capacity of the knapsack.

In the web auction application, each bid is an item, with its “weight” 
being the number of units being requested and its benefit being the 
amount of money being offered. 

In the instance, where bids can be satisfied with a partial fulfillment, 
then it is an instance of the fractional knapsack problem, for which 
the greedy method works to find an optimal solution. 

Interestingly, for the “0-1” version of the problem, where fractional 
choices are not allowed, then the greedy method may not work and 
the problem is potentially very difficult to solve in polynomial time.
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The Fractional Knapsack
Problem

Given: A set S of n items, with each item i having
◼ bi - a positive benefit

◼ wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

If we are allowed to take fractional amounts, then this is 
the fractional knapsack problem.
◼ In this case, we let xi denote the amount we take of item i

◼ Objective: maximize

◼ Constraint:
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Example
Given: A set S of n items, with each item i having
◼ bi - a positive benefit

◼ wi - a positive weight

Goal: Choose items with maximum total benefit but with 
weight at most W.

Weight:

Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3

($ per ml)

4 20 5 50

10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”
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The Fractional Knapsack 
Algorithm

Greedy choice: Keep taking 
item with highest value
(benefit to weight ratio)
◼ Since 

◼ Run time: O(n log n). Why?

Correctness: Suppose there 
is a better solution
◼ there is an item i with higher 

value than a chosen item j, 
but xi<wi, xj>0 and vi<vj

◼ If we substitute some i with j, 
we get a better solution

◼ How much of i: min{wi-xi, xj}

◼ Thus, there is no better 
solution than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i 

to maximize benefit w/ weight 
at most W

for each item i in S

xi  0

vi  bi  / wi {value}

w  0 {total weight}

while w < W 

remove item i w/ highest vi

xi  min{wi , W - w}

w  w + min{wi , W - w}


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Analysis of Greedy Algorithm for 
Fractional Knapsack Problem

We can sort the items by their benefit-to-weight values, and then 
process them in this order. 

This would require O(n log n) time to sort the items and then 
O(n) time to process them in the while-loop.

To see that our algorithm is correct, suppose, for the sake of 
contradiction, that there is an optimal solution better than the one 
chosen by this greedy algorithm. 

Then there must be two items i and j such that

xi < wi, xj > 0, and vi > vj .

Let y = min{wi − xi, xj}.

But then we could replace an amount y of item j with an equal
amount of item i, thus increasing the total benefit without
changing the total weight, which contradicts the assumption that
this non-greedy solution is optimal.
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Task Scheduling
Given: a set T of n tasks, each having:
◼ A start time, si

◼ A finish time, fi (where si < fi)

Goal: Perform all the tasks using a minimum number of 
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2
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Example
Given: a set T of n tasks, each having:
◼ A start time, si

◼ A finish time, fi (where si < fi)

◼ [1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2
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Task Scheduling Algorithm
Greedy choice: consider tasks 
by their start time and use as 
few machines as possible with 
this order.

◼ Run time: O(n log n). Why?

Correctness: Suppose there is a 
better schedule.

◼ We can use k-1 machines

◼ The algorithm uses k

◼ Let i be first task scheduled 

◼  conflict with 

on machine k

Task i must k-1 
other tasks

◼ But that means there is no 
non-conflicting schedule 
using k-1 machines

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time si

and finish time fi

Output: non-conflicting schedule 
with minimum number of machines

m  0 {no. of machines}

while T is not empty

remove task i w/ smallest si

if there’s a machine j for i then

schedule i on machine j

else

m  m + 1

schedule i on machine m
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▶ Given a graph G = (V , E ).
▶ Select V ′ ⊆ V such that

▶ Every (u, v) ∈ E has u or v ∈ V ′

▶ Optimization: find smallest V ′.

Example:

A

B C D

E F G
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▶ Idea: every edge gets represented

A

B C D

E F G

C = ∅
E ′ = G .E
while E ′ ̸= ∅ do

Select any e = (u, v) ∈ E ′

Add u, v to C
Remove all edges incident to u or v

return C



8 How accurate is it?

C = ∅
E ′ = G .E
while E ′ ̸= ∅ do

Select any e = (u, v) ∈ E ′

Add u, v to C
Remove all edges incident to u or v

return C




