TxT
4

Lecture 9
The Greedy Method

CS 161 Design and Analysis of Algorithms

loannis Panageas

Application: Web Auctions

N

Suppose you are designing a new online auction website that
is intended to process bids for multi-lot auctions.

This website should be able to handle a single auction for 100
units of the same digital camera or 500 units of the same
smartphone, where bids are of the form, “x units for $y,”
meaning that the bidder wants a quantity of x of the items being
sold and is willing to pay $y for all x of them.

The challenge for your website is that it must allow for a large
number of bidders to place such multi-lot bids and it must decide
which bidders to choose as the winners.

Naturally, one is interested in designing the website so that it
always chooses a set of winning bids that maximizes the total
amount of money paid for the items being auctioned.

So how do you decide which bidders to choose as the winners?

© 2015 Goodrich and Tamassia Greedy Method 2

The Greedy Method é’@@

N

J@ The greedy method is a general algorithm
design paradigm, built on the following
elements:

= configurations: different choices, collections, or
values to find

= objective function: a score assigned to
configurations, which we want to either maximize or
minimize
It works best when applied to problems with the
greedy-choice property:
= a globally-optimal solution can always be found by a

series of local improvements from a starting

configuration.
© 2015 Goodrich and Tamassia Greedy Method 3

The Greedy Method

The sequence of choices starts from some well-understood
starting configuration, and then iteratively makes the
decision that is best from all of those that are currently
possible, in terms of improving the objective function.

N

score =5

Step 1: -:/ +\ \
score=9 score =8 score =7
Step 2: +2 +1\ +3

score =11 score = 10 score =12

Step 3: ""% +x\‘

score=17 score =15 score = 16

© 2015 Goodrich and Tamassia Greedy Method 4

Web Auction Application

N

i # This greedy strategy works for the profit-maximizing online

auction problem if you can satisfy a bid to buy x units for $y by
selling k < x units for $k * y/x.

In this case, this problem is equivalent to the fractional
knapsack problem.

American Gls recover works of art stolen by the Nazis (NARA/Public Domain)

© 2015 Goodrich and Tamassia Greedy Method 5

Web Auctions and the
Fractional Knapsack Problem

N

In the knapsack problem, we are given a set of n items, each
having a weight and a benefit, and we are interested in choosing
the set of items that maximize our total benefit while not going over
the weight capacity of the knapsack.

In the web auction application, each bid is an item, with its “weight
being the number of units being requested and its benefit being the
amount of money being offered.

In the instance, where bids can be satisfied with a partial fulfillment,
then it is an instance of the fractional knapsack problem, for which
the greedy method works to find an optimal solution.

Interestingly, for the "0-1" version of the problem, where fractional
choices are not allowed, then the greedy method may not work and
the problem is potentially very difficult to solve in polynomial time.

{4

© 2015 Goodrich and Tamassia Greedy Method 6

The Fractional Knapsack ({4
Problem (zf S~z

N

Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W.

If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.
= In this case, we let x; denote the amount we take of item i

= Objective: maximize Zbi (Xi / Wi)
ieS
= Constraint: in <W

€S
© 2015 Goodrich and Tamassia Greedy Method 7

Example e

N

Given: A set S of n items, with each item i having
= b, - a positive benefit
= W, - a positive weight
Goal: Choose items with maximum total benefit but with
weight at most W. —

=== “knapsack”
= — _
— = Solution:
. = - el mlof5
ltems: E e 2 mlof3
: e 6 mlof4
Weight: 4ml 8ml 2ml 6ml 1ml e 1 mlof 2
Benefit: $12 $32 $40 $30 $50 10 ml
Value: 3 4 20 5 50
($ per ml)

© 2015 Goodrich and Tamassia Greedy Method 8

The Fractional Knapsack

Algorithm

N
\J

Greedy choice: Keep taking

/
|

(6240
((“:/Jl\/

(benefit to weight ratio)
. SmceZb(x/W) Z(b /W)X
= Run time: O(n Iog n) Why?

Correctness: Suppose there
IS a better solution

m there is an item i with higher
value than a chosen item j,

but x;<w;, ;>0 and v;<v;

= If we substitute some i W|th j,
we get a better solution

= How much of i: min{w;-x;, X;}
= Thus, there is no better

item with highest value Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit b;
and weight w;; max. weight W

Output: amount x; of each item |
to maximize benefit w/ weight
at most W

foreachitemiin S

X; < 0

Vi< b /w, {value}
W<« 0 {total weight}
while w <W

remove item i w/ highest v,
X; <= min{w; , W - w}
W<« w +min{w; , W - w}

solution than the greedy one
© 2015 Goodrich and Tamassia Greedy Method

Analysis of Greedy Algorithm for
Fractional Knapsack Problem

N

#® We can sort the items by their benefit-to-weight values, and then
process them in this order.

This would require O(n log n) time to sort the items and then
O(n) time to process them in the while-loop.

To see that our algorithm is correct, suppose, for the sake of
contradiction, that there is an optimal solution better than the one
chosen by this greedy algorithm.

Then there must be two items i and j such that
Xi <w, x;>0,and v, >v;.
® Lety = min{w,; — Xx;, X}
But then we could replace an amount y of item j with an equal
amount of item i, thus increasing the total benefit without

changing the total weight, which contradicts the assumption that
this non-greedy solution is optimal.

© 2015 Goodrich and Tamassia Greedy Method 10

Task Scheduling

N

Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f; (where s; < f))

Goal: Perform all the tasks using a minimum number of

14 = 14/
machines.
Machine 3 [O I] |
Machine2 | |
Machine 1 |] T e e

© 2015 Goodrich and Tamassia Greedy Method 11

Example

N

Given: a set T of n tasks, each having:
= A start time, s
= A finish time, f; (where s; < f))
s [1,4],[1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)
Goal: Perform all tasks on min. number of machines

Machine 3]] I
Machine2 | .)
Machine 1 | | |

© 2015 Goodrich and Tamassia Greedy Method 12

N

Greedy choice: consider tasks
by their start time and use as

Task Scheduling Algorithm

few machines as possible with
this order.

= Run time: O(n log n). Why?
Correctness: Suppose there is a
better schedule.
= We can use k-1 machines
= The algorithm uses k

m Let i be first task scheduled
on machine k

s Task i must k-1conflict with
other tasks

= But that means there is no
non-conflicting schedule

Algorithm taskSchedule(T)

Input: set T of tasks w/ start time s;
and finish time f;

Output: non-conflicting schedule
with minimum number of machines

m«0 {no. of machines}
while T is not empty
remove task i w/ smallest s;
if there s a machine j for i then
schedule i on machine |
else
m«m+1
schedule i on machine m

using k-1 machines
© 2015 Goodrich and Tamassia Greedy Method

13

Vertex Cover

» Given agraph G=(V, E).
» Select V' C Vsuch that
» Every(u,v) € Ehasuorve V'

» Optimization: find smallest V.

Example:
B © D

. A Greedy Algorithm

» |dea: every edge gets represented
B © D

C=1
E'=G.E
while £’ # () do
Select any e = (u,v) € E’
Add u,v to C
Remove all edges incident to u or v
return C

. How accurate is it?

C=10
E'=G.E
while £’ # () do
Select any e = (u,v) € E’
Add u,v to C
Remove all edges incident to u or v
return C

